MATHEMATICS IN EVERYDAY LIFE–7

CORDO

Chapter 11 : Lines and Angles

ANSWER KEYS

EXERCISE 11.1

1. Since, the measures of two complementary angles add up to 90°, and the measures of two supplementary angles add up to 180°. Therefore, (*i*) Complementary angle of $26^\circ = (90^\circ - 26^\circ)$ = 64° Supplementary angle of $26^\circ = (180^\circ - 26^\circ)$ $= 154^{\circ}$ (*ii*) Complementary angle of $62^\circ = (90^\circ - 62^\circ)$ = 28° Supplementary angle of $62^{\circ} = (180^{\circ} - 62^{\circ})$ = 118° (*iii*) Complementary angle of $9^\circ = (90^\circ - 9^\circ)$ = 81° Supplementary angle of $9^\circ = (180^\circ - 9^\circ)$ = 171° (*iv*) Complementary angle of $51^\circ = (90^\circ - 51^\circ)$ $= 39^{\circ}$ Supplementary angle of $51^{\circ} = (180^{\circ} - 51^{\circ})$ $= 129^{\circ}$ (v) Complementary angle of $37^\circ = (90^\circ - 37^\circ)$ = 53° Supplementary angle of $37^{\circ} = (180^{\circ} - 37^{\circ})$ $= 143^{\circ}$ (*i*) The complement of $72^\circ = (90^\circ - 72^\circ)$ 2. $= 18^{\circ}$ (*ii*) The complement of $19^\circ = (90^\circ - 19^\circ)$ $= 71^{\circ}$ (*iii*) The complement of $88^\circ = (90^\circ - 88^\circ)$ = 2° (*iv*) The complement of $25^\circ = (90^\circ - 25^\circ)$ $= 65^{\circ}$ 3. Since, PQ is a straight line and OR stands on it. Therefore, $\angle 1$ and $\angle 4$ form a linear pair of angles.

 $\angle 1 + \angle 4 = 180^{\circ}$ *.*.. $53^{\circ} + \angle 4 = 180^{\circ}$ ÷. (∵ ∠1 = 53°) $\angle 4 = 180^{\circ} - 53^{\circ} = 127^{\circ}.$ \Rightarrow Since, $\angle 1$ and $\angle 3$ are vertically opposite angles. ÷. $\angle 1 = \angle 3$ 53° = ∠3 \Rightarrow ∠3 = 53° \Rightarrow Also, $\angle 2$ and $\angle 4$ are vertically opposite angles. $\angle 2 = \angle 4$ ∠2 = 127° \Rightarrow Hence, $\angle 2 = 127^{\circ}$, $\angle 3 = 53^{\circ}$, $\angle 4 = 127^{\circ}$. *(i)* $x + 80^{\circ} = 180^{\circ}$ (Linear pair of angles)

 $\Rightarrow \qquad x = 180^{\circ} - 80^{\circ}$ $\Rightarrow \qquad x = 100^{\circ}$

(ii)

4.

 $\therefore \quad 3x + 2x = 180^{\circ}$ $\implies \quad 5x = 180^{\circ}$

(Linear pair of angles)

Mathematics In Everyday Life-7

$$\Rightarrow \qquad x = \frac{180^{\circ}}{5} = 36^{\circ}$$
$$\Rightarrow \qquad x = 36^{\circ}$$

Linear pair of angles:

(*a*, *c*), (*c*, *d*), (*d*, *b*), (*a*, *b*), (*e*, *f*), (*i*, *e*), (*i*, *j*), (*j*, *f*), (*g*, *h*), (*g*, *k*), (*k*, *l*), (*l*, *h*) Pair of vertically opposite angles:

(a, d), (c, b), (e, j), (i, f), (g, l), (h, k)

6.

5.

If *AOB* is a straight line, then $\angle AOC + \angle BOC = 180^{\circ}$

$$\Rightarrow (3x + 8^{\circ}) + (2x - 33^{\circ}) = 18^{\circ}$$

$$\Rightarrow 5x - 25^{\circ} = 180^{\circ}$$

$$\Rightarrow 5x = 180^{\circ} + 25^{\circ}$$

$$\Rightarrow 5x = 205^{\circ}$$

$$\Rightarrow x = \frac{205^{\circ}}{5}$$

$$\Rightarrow x = 41^{\circ}$$

Hence, $x = 41^{\circ}$ will make *AOB* a straight line.

 $\therefore 110^{\circ} + 51^{\circ} + 69^{\circ} + x = 360^{\circ} \quad \text{(Complete angle)}$ $\Rightarrow \qquad x = 360^{\circ} - 230^{\circ}$ $\Rightarrow \qquad x = 130^{\circ}$

Hence, the value of x is 130°.

8. : Ray *OQ* stands on a straight line *POR*.

$$(2x - 30^{\circ})$$

$$O$$

$$(3x + 40^{\circ})$$

$$R$$

Therefore,

 $\angle POQ + \angle ROQ = 180^{\circ}$ (Linear pair of angles) $\Rightarrow (2x - 30^{\circ}) + (3x + 40^{\circ}) = 180^{\circ}$ $\Rightarrow 5x + 10^{\circ} = 180^{\circ}$ $\Rightarrow 5x = 180^{\circ} - 10^{\circ}$ $\Rightarrow 5x = 170^{\circ}$ $\Rightarrow x = \frac{170^{\circ}}{5}$ $\Rightarrow x = 34^{\circ}$ Hence, $\angle POQ = (2 \times 34^{\circ} - 30^{\circ}) = 38^{\circ}$

$$\angle ROQ = (3 \times 34^\circ + 40^\circ) = 142^\circ$$

9. :: XOY is a straight line and ray OP and ray OQ stand on it.

Then, pair of adjacent angles: $(\angle XOP, \angle POQ), (\angle POQ, \angle QOY)$ $(\angle XOP, \angle POY), (\angle XOQ, \angle QOY)$ Linear pair: $(\angle XOP, \angle POY), (\angle XOQ, \angle QOY)$

10. Since, *OP* and *OQ* are opposite rays and ray *OR* stands on *PQ*.

$$\angle POR + \angle QOR = 180^{\circ} \qquad \text{(Linear pair)}$$

$$\Rightarrow 5x + (2y - 16^{\circ}) = 180^{\circ}$$

$$\Rightarrow 5x + 2y = 180^{\circ} + 16^{\circ}$$

$$\Rightarrow 5x + 2y = 196^{\circ} \qquad \dots(1)$$

(*i*) If $y = 73^{\circ}$, then from (1), we get
 $5x + 2 \times 73^{\circ} = 196^{\circ}$

$$\Rightarrow 5x + 146^{\circ} = 196^{\circ}$$

$$\Rightarrow 5x + 140 = 150$$

$$\Rightarrow 5x = 196^{\circ} - 146^{\circ}$$

$$\Rightarrow 5x = 50^{\circ}$$

$$\Rightarrow x = \frac{50^{\circ}}{5}$$

$$\Rightarrow x = 10^{\circ}$$

(ii) If $x = 14^\circ$, then from (1), we get $(5 \times 14^\circ) + 2y = 196^\circ$ $\Rightarrow 70^\circ + 2y = 196^\circ$ $\Rightarrow 2y = 196^\circ - 70^\circ$ $\Rightarrow 2y = 126^\circ$ $\Rightarrow y = \frac{126^\circ}{2} = 63^\circ$ $\Rightarrow y = 63^\circ$

11.

$$z = \frac{x}{y}$$

Also, angles z and 28° are vertically opposite angles.

$$z = 28^{\circ}$$

.:

12. Since, in *△PQR*, sides *PR* and *QR* are extended to *B* and *A* respectively. Therefore,

 $\angle PRQ = \angle ARB \quad \text{(Vertically opposite angles)} \\ \angle PRQ = 62^{\circ} \qquad (\because \angle ARB = 62^{\circ}) \\ \because \text{ Ray } RB \text{ stands on } AQ. \text{ Then} \\ \angle ARB + \angle BRQ = 180^{\circ} \quad (\because \text{ Linear pair of angles}) \\ \Rightarrow 62^{\circ} + \angle BRQ = 180^{\circ} \\ \Rightarrow \angle BRQ = 180^{\circ} - 62^{\circ} \\ \angle BRQ = 180^{\circ} \\ \text{Hence, } \angle PRQ = 62^{\circ} \text{ and } \angle BRQ = 118^{\circ}. \end{aligned}$

EXERCISE 11.2

1.
$$\therefore$$
 $l \parallel m$ and n is a transversal.

 $\angle a = \angle c$ (Vertically opposite angles)

\Rightarrow	$\angle a = 72^{\circ}$	$(:: \angle c = 72^{\circ})$
Now,	$\angle a = \angle f$	(Corresponding angles)
<i>.</i>	72° = ∠f	
or	$\angle f = 72^{\circ}$	
\Rightarrow	$\angle f + \angle d = 180^{\circ}$	(Pair of interior angles)
\Rightarrow	$72^\circ + \angle d = 180^\circ$	
<i>.</i> .	$\angle d = 180^{\circ} -$	72°
\Rightarrow	$\angle d = 108^{\circ}$	
	7	п

 $\angle e = \angle d$ (Alternate interior angles) $\angle e = 108^{\circ}$ ($\because \angle d = 108^{\circ}$)

 $\angle h = \angle e$ (Vertically opposite angles)

$$\angle h = 108^{\circ}$$

÷

 \Rightarrow

÷

 \Rightarrow

...

- $\angle f = \angle g$ (Vertically opposite angles)
- $\Rightarrow \qquad \qquad \boxed{\angle g = 72^{\circ}} \qquad (\because \ \angle f = 72^{\circ})$
- and $\angle d = \angle b$ (Vertically opposite angles) $\Rightarrow \qquad \boxed{\angle b = 108^{\circ}} \qquad (\because \angle d = 108^{\circ})$

Hence, $\angle a = 72^{\circ}$, $\angle b = 108^{\circ}$, $\angle d = 108^{\circ}$, $\angle e = 108^{\circ}$, $\angle f = 72^{\circ}$, $\angle g = 72^{\circ}$, $\angle h = 108^{\circ}$.

Mathematics In Everyday Life-7

 $QP \parallel RS$

 $\angle QPR = \angle PRS$ *:*.. (Alternate angles) $\angle PRS = 65^{\circ}$ $(\because QPR = 65^{\circ}) \dots (i)$ \Rightarrow Now, $\angle PRQ + \angle PRS + \angle SRT = 180^{\circ}$ (Linear pair) $45^\circ+65^\circ+\angle SRT=180^\circ$ \Rightarrow

[:: $PRQ = 45^\circ$, and using (i)] $\angle SRT = 180^{\circ} - 110^{\circ}$ \Rightarrow

$$\Rightarrow$$
 $\angle SRT = 70^{\circ}$

3.

 \therefore *AB* || *DE*, *AC* is a transversal. $\angle BAO = \angle EOC$ *.*..

(Corresponding angles)...(i)

 $AC \parallel DF$ and DE is a transversal. and $\angle EOC = \angle EDF$ *.*..

(Corresponding angles)...(ii) From (i) and (ii), we get,

 $\angle BAC = \angle EDF$ (Hence proved) 4. Since, *PQ* || *SR* and *PR* is a transversal. Therefore,

 $\angle SRP = \angle QPR$ (Alternate angles) $\angle SRP = 65^{\circ}$ ($\therefore \angle QPR = 65^\circ$) \Rightarrow Again, *PS* ||*QR* and *PR* is a transversal.

 $\angle SRP = \angle QRP$ (Alternate angles) Therefore, $\angle QRP = 45^{\circ}$ $(:: \angle SPR = 45^{\circ})$ $\angle SRQ = \angle SRP + \angle QRP$ Now, $= 65^{\circ} + 45^{\circ}$

$$\angle SRQ = 110^{\circ}$$

÷ $\angle y + 120^{\circ} = 180^{\circ}$ (Linear pair of angles) $\angle y = 180^\circ - 120^\circ$ \Rightarrow

$$\angle y = 60^{\circ}$$

∠y +

Since, $BC \parallel AD$ and CD is a transversal.

Therefore, $\angle x + \angle y = 180^\circ$ (Pair of interior angles) \Rightarrow $\angle x = 180^\circ - 60^\circ$ $(\because y = 60^\circ)$ $\angle x = 120^{\circ}$

$$\angle z = 180^{\circ} \qquad \text{(Interior angles)}$$
$$\angle z = 180^{\circ} - 60^{\circ} \qquad (\because y = 60^{\circ})$$
$$\boxed{\angle z = 120^{\circ}}$$

Hence,
$$x = 120^{\circ}$$
, $y = 60^{\circ}$ and $z = 120^{\circ}$.

6.

5.

 $l \parallel m$ and n is a transversal. ...

$$\therefore \qquad \angle 1 = \angle 3 \qquad \text{(Alternate exterior angles)}$$

$$\Rightarrow \qquad \boxed{\angle 3 = 80^{\circ}} \qquad [\because \angle 1 = 80^{\circ} \text{ (given)}]$$

$$\angle 2 + \angle 3 = 180^{\circ} \qquad \text{(Linear pair of angles)}$$

$$\Rightarrow \qquad \angle 2 + 80^{\circ} = 180^{\circ}$$

$$\Rightarrow \qquad \angle 2 = 180^{\circ} - 80^{\circ}$$

$$\boxed{\angle 2 = 100^{\circ}}$$
Now, $\angle 3 + \angle 4 = \angle 5$

$$\Rightarrow \qquad \angle 4 = \angle 5 - \angle 3$$

$$\Rightarrow \qquad \angle 4 = 100^{\circ} - 80^{\circ} \qquad [\because \angle 5 = 100^{\circ} \text{ (given)}]$$
Hence, $\angle 2 = 100^{\circ}, \angle 3 = 80^{\circ}, \angle 4 = 20^{\circ}.$

 $\angle LRM + \angle RLQ = 180^{\circ}$ (Pair of interior angles) $\Rightarrow \angle LRM + (\angle RLM + \angle MLQ) = 180^{\circ}$ $\Rightarrow \angle LRM + (50^{\circ} + 45^{\circ}) = 180^{\circ}$ $(\because \angle RLM = 50^{\circ})$ $\Rightarrow \angle LRM = 180^{\circ} - 95^{\circ}$ $\Rightarrow \angle LRM = 85^{\circ}$ Hence, $\angle LRM = 85^{\circ}$

9. (*i*) \therefore $l \parallel m$ and n is a transversal.

 $\angle y = 100^{\circ}$ (Alternate interior angles)

and $\angle x + \angle y = 180^{\circ}$ (Linear pair of angles) $\Rightarrow \qquad \angle x = 180^{\circ} - 100^{\circ}$ ($\because \angle y = 100^{\circ}$) $\Rightarrow \qquad \angle x = 80^{\circ}$

Hence, $\angle x = 80^{\circ}$ and $\angle y = 100^{\circ}$.

(*ii*) \therefore $l \parallel m$ and *AB* is a transversal.

...

Then, $\angle x = 110^{\circ}$

10.

(Corresponding exterior angles) Also, $l \parallel m$ and *CD* is a transversal.

Then $\angle y = (180^{\circ} - 80^{\circ})$

$$\angle y = 100^{\circ}$$

Hence, $\angle x = 110^{\circ}$ and $\angle y = 100^{\circ}$.

\therefore	$l \parallel m$	
Then	$\angle f = 65^{\circ}$ (·· Vertically opposite angles)
:.	$\angle a = \angle f = 65^{\circ}$ (: Alternate interior angles)
\therefore	$\angle a + \angle e = 180^{\circ}$	(Pair of interior angles)
\Rightarrow	$\angle e = 180^{\circ} -$	- 65°
\Rightarrow	$\angle e = 115^{\circ}$	
\therefore	$\angle e = \angle g$	(Vertically opposite angles)
\Rightarrow	$\angle g = 115^{\circ}$	
\therefore	$\angle e = \angle d$	(Alternate angles)
\Rightarrow	$\angle d = 115^{\circ}$	
\therefore	$\angle d = \angle b$	(Vertically opposite angles)
\Rightarrow	$\angle b = 115^{\circ}$	
and	$\angle c = \angle a$	(Vertically opposite angles)
\Rightarrow	$\angle c = 65^{\circ}$	
Hence, $\angle a = 65^{\circ}$, $\angle b = 115^{\circ}$, $\angle c = 65^{\circ}$, $\angle d = 115^{\circ}$,		
$\angle e = 115^\circ$, $\angle f = 65^\circ$, $\angle g = 115^\circ$.		

Mathematics In Everyday Life-7

- (i) Corresponding angles: (4, 5), (1, 6), (3, 8), (2, 7)
- (*ii*) Alternate interior angles: (1, 8), (2, 5)
- (*iii*) Alternate angle of $\angle 2$ is $\angle 5$.
- (*iv*) Angle corresponding to $\angle 7$ is $\angle 2$.
- (*v*) Pairs of interior angles on the same side of the transversal: (1, 5) and (2, 8).

 \therefore *AB* || *CE* and *BC* is a transversal.

 $\therefore \qquad \angle y = 60^{\circ} \qquad \text{(Alternate angles)}$ Now, *BC* || *DF* and *CE* is a transversal.

 $\angle BCE = \angle FDE = 50^{\circ}$ (Corresponding angles) $\angle x = \angle BCE$

> (:: $AB \parallel CB$ and BC is a transversal) $\angle x = 50^{\circ}$

Hence, $\angle x = 50^{\circ}$ and $\angle y = 60^{\circ}$.

13. (*i*) If $l \parallel m$ and n is a transversal. Then, alternate exterior angles are equal.

But, here alternate angles $\angle 70^{\circ} \neq \angle 85^{\circ}$. So, *l* is not parallel to *m*.

(*ii*) If the sum of the exterior angles on the same side of a transversal is 180°, then both lines are parallel.

Here, $120^{\circ} + 60^{\circ} = 180^{\circ}$. Hence, $l \parallel m$.

14. \therefore *AC* || *BD* and *AB* is a transversal.

<i>.</i> .	$x + 115^{\circ} = 180^{\circ}$	(Pair of interior a	ngles)
\Rightarrow	$x = 180^{\circ} -$	115°	
\Rightarrow	$x = 65^{\circ}$		(i)

Now,

$$\angle ABD + \angle ABF + \angle FBG = 180$$

(Linear pair of angles)

$$\Rightarrow x + y + 85^{\circ} = 180^{\circ}$$

$$\Rightarrow 65^{\circ} + y + 85^{\circ} = 180^{\circ}$$
 [from (i)]

$$\Rightarrow y = 180^{\circ} - 150^{\circ}$$

$$\Rightarrow y = 30^{\circ} \dots (ii)$$

 \therefore *AE* || *BF* and *AB* is a transversal.

 $\therefore \angle EAB + \angle ABF = 180^{\circ} \qquad \text{(Interior angles)}$ $\Rightarrow \qquad z + y = 180^{\circ}$ $\Rightarrow \qquad z = 180^{\circ} - 30^{\circ} \qquad \text{[from (ii)]}$

 $z = 150^{\circ}$

Hence, $x = 65^{\circ}$, $y = 30^{\circ}$ and $z = 150^{\circ}$.

 \Rightarrow

- (*i*) Linear pair of angles (1, 5), (4, 5)
- (ii) Vertically opposite angles (4, 1)

MULTIPLE CHOICE QUESTIONS

 When two lines intersect at a point, then 4 pairs of adjacent angles are formed. Hence, option (*a*) is correct.

- **2.** The complement of $36^{\circ} = (90^{\circ} 36^{\circ}) = 54^{\circ}$ Hence, option (*b*) is correct.
- 3. The supplement of $68^{\circ} = (180^{\circ} 68^{\circ}) = 112^{\circ}$ Hence, option (*d*) is correct.
- 4. Supplement of $70^{\circ} = (180^{\circ} 70^{\circ}) = 110^{\circ}$: The measure of two complementary any angles add upto 90°.
 - \therefore It is not possible to have a complement of 110°. Hence, option (*d*) is correct.
- 5. The complement of $26^\circ = (90^\circ 26^\circ)$ = 64°

Now, supplement of $64^\circ = (180^\circ - 64^\circ)$ = 116°

Hence, option (*c*) is correct.

6. Since, PQ and RS intersect at point O. Then,

 $\angle POS = \angle QOR$ (Vertically opposite angles) $\angle QOR = 45^{\circ}$ (:: $\angle POS = 45^{\circ}$) \Rightarrow Hence, option (*d*) is correct.

: Ray OC stands on line AOB. 7.

 $\angle AOC + \angle BOC = 180^{\circ}$ (:: Linear pair of angles) *:*.. $\angle BOC = 180^{\circ} - 145^{\circ} = 35^{\circ}$ \Rightarrow

$$(:: \angle AOC = 145^{\circ})$$

Hence, option (*c*) is correct.

8.

 $\angle AOC + \angle AOB + \angle BOD + \angle COD = 360^{\circ}$ $90^{\circ} + 30^{\circ} + 100^{\circ} + x = 360^{\circ}$

$$\Rightarrow 220^{\circ} + x = 360^{\circ}$$
$$\Rightarrow x = 360^{\circ} - 220^{\circ}$$

 \Rightarrow $x = 140^{\circ}$

Hence, option (*b*) is correct.

AB || EC and BC is a transversal. •.•

$$\therefore \qquad \angle BAC = \angle ACE \qquad (Alternate angles) \\ \Rightarrow \qquad \angle ACE = 60^{\circ} \qquad (\because \angle BAC = 60^{\circ})$$

Now,
$$\angle ACB + \angle ACE + \angle ECD = 180^{\circ}$$

(Linear pair of angles)

$$\Rightarrow \angle ACB + 60^{\circ} + 70^{\circ} = 180^{\circ}$$
$$\Rightarrow \angle ACB = 180^{\circ} - (60^{\circ} + 70^{\circ})$$
$$\angle ACB = 180^{\circ} - 130^{\circ}$$
$$\angle ACB = 50^{\circ}$$

Hence, option (*a*) is correct.

10. :: $l \parallel m$ and let *n* be a transversal.

 $\angle x = 130^{\circ}$ (Alternate exterior angles) *.*.. Hence, option (*b*) is correct.

11. Let the complementary be *x*. Then the angle is 5*x*. Then,

$$\therefore 5x + x = 90^{\circ}$$

$$\Rightarrow 6x = 90^{\circ}$$

$$\Rightarrow x = \frac{90^{\circ}}{6}$$

$$\Rightarrow x = 15^{\circ}$$

 \Rightarrow

The required angle is $5 \times 15^\circ = 75^\circ$ Hence, option (*c*) is correct.

12. Two angles can be supplementary, if both of them are right angles.

Hence, option (*c*) is correct.

MENTAL MATHS CORNER

Fill in the blanks:

1. If two angles of a linear pair are equal, then measure of each angle is 90°.

Let the equal angels of linear pair be *x*.

$$\therefore \quad x + x = 180^\circ$$

- $2x = 180^{\circ}$ \Rightarrow
- \Rightarrow $x = 90^{\circ}$.
- If the magnitude of an angle is same as its 2. complement, then measure of the angle is 45°.
- 3. If the magnitude of an angle is same as its supplement, then the angle is 90°.
- 4. Two angles are such that one of the angles is $\frac{4}{r}$ of its supplement, then the angle is 80° and its supplement is 100°.

Let the supplementary angle be *x*.

Then, required angle is
$$\frac{4}{5}x$$
.

$$\therefore x + \frac{4}{5}x = 180^{\circ}$$

$$\Rightarrow \frac{9x}{5} = 180^{\circ}$$

$$\Rightarrow 9x = 180^{\circ} \times 5$$

$$\Rightarrow x = \frac{180^{\circ} \times 5}{9} = 100^{\circ}$$
Angle = $\frac{4}{5} \times 100^{\circ} = 80^{\circ}$.

- 5. Two angles forming a linear pair are **supplementary**.
- If two adjacent angles are supplementary, they form 6. a linear pair.
- 7. If two lines intersect at a point, then the vertically opposite angles are always equal.
- An angle is greater than 45°, then its complementary 8. angle is **less** than 45°.

9. An angle is $\frac{2}{3}$ of its complement, then the angle is 36° and its complement is 54°. Let the complementary angle be *x*.

Then, the angle is
$$\frac{2}{3}x$$
.

$$\therefore x + \frac{2}{3}x = 90^{\circ}$$

$$\Rightarrow \frac{5x}{3} = 90^{\circ}$$

$$\Rightarrow x = \frac{90^{\circ} \times 3}{5} = 54^{\circ}$$
Angle $= \frac{2}{3} \times 54^{\circ} = 36^{\circ}$.

10. The ratio of two angles of a linear pair is 2 : 3. Then the angles are 72° and 108°.

Let the two angles of a linear pair be 2x and 3x. Then,

$$2x + 3x = 180^{\circ}$$

$$\Rightarrow 5x = 180^{\circ}$$

$$\Rightarrow x = \frac{180^{\circ}}{5}$$

$$\Rightarrow x = 36^{\circ}$$

 \exists

1.

Hence, angles are 72° and 108°.

11. The difference between the measures of two angles of a linear pair is 80°, then the smallest angle is 50°. Let the smallest angle of linear pair be *x*.

Then, other angle = $(80^\circ + x)$ Therefore,

$$x + (80^{\circ} + x) = 180^{\circ}$$

$$\Rightarrow 2x + 80^{\circ} = 180^{\circ}$$

$$\Rightarrow 2x = 180^{\circ} - 80^{\circ}$$

$$\Rightarrow 2x = 100^{\circ}$$

$$\Rightarrow x = \frac{100^{\circ}}{2}$$

$$\Rightarrow x = 50^{\circ}$$

Thus, the smallest angle of linear pair is 50°.

12. The supplement of 180° is **0**°.

REVIEW EXERCISE

- (*i*) Linear pair: (1, 2), (2, 3), (3, 4), (1, 4), (6, 5), (6, 7), (7, 8), (5, 8).
- (ii) Pairs of vertically opposite angles: (2, 4), (3, 1), (6, 8), (5, 7).
- line *l* and line *m* intersect at point *O*. Therefore, 2. ·:·

Answer Keys

 $\angle 2 = \angle 4$ *:*. (Vertically opposite angles) ∠2 = 70° $(:: \angle 4 = 70^{\circ})$ \Rightarrow $\angle 1 + \angle 2 = 180^{\circ}$ Also, (Linear pair of angles) $\angle 1 + 70^{\circ} = 180^{\circ}$ \Rightarrow $\angle 1 = 180^{\circ} - 70^{\circ}$ \Rightarrow ∠1 = 110° \Rightarrow (Vertically opposite angles) ∠1 = ∠3 and ∠3 = 110° (:: ∠1 = 110°) \Rightarrow Hence, $\angle 1 = 110^{\circ}$, $\angle 2 = 70^{\circ}$, $\angle 3 = 110^{\circ}$.

3.

\vdots	$l \parallel m$ and p is a transversal.	
:.	$\angle 1 + 65^\circ = 180^\circ$ (Pair of interior angles)	
\Rightarrow	$\angle 1 = 180^{\circ} - 65^{\circ} = 115^{\circ}$	
\Rightarrow	∠1 = 115°	
\vdots	$p \parallel q$ and l is a transversal. Then	
	$\angle 5 = \angle 65^{\circ}$ (Alternate exterior angles)	
And, $l \parallel m$ and q is a transversal. Then,		
	$\angle 5 = \angle 2$ (Corresponding angles)	
\Rightarrow	$\angle 2 = 65^{\circ}$	
No	w, $\angle 2 = \angle 3$ (Vertically opposite angles)	
\Rightarrow	$\angle 3 = 65^{\circ}$	
Also	b, $\angle 3 + \angle 4 = 180^{\circ}$ (Linear pair of angles)	
\Rightarrow	$65^\circ + \angle 4 = 180^\circ$	
\Rightarrow	$\angle 4 = 180^\circ - 65^\circ$	
\Rightarrow	$\angle 4 = 115^{\circ}$	

Hence, $\angle 1 = 115^{\circ}$, $\angle 2 = 65^{\circ}$, $\angle 3 = 65^{\circ}$, $\angle 4 = 115^{\circ}$, ∠5 = 65°.

- 4. (i) No,
 - (*ii*) :: $115^{\circ} + 65^{\circ} = 180^{\circ}$ (Pair of interior angles) Hence, $l \parallel m$.
 - (iii) If two lines are parallel, then sum of alternate exterior angles is 180°.

 \therefore 121° + 59° = 180° Hence, $l \parallel m$.

 $AB \parallel CD$ and BE is a transversal. Then ÷ $\angle ABD = \angle CDE$ (Corresponding angles)

Mathematics In Everyday Life-7

- $\angle CDE = 60^{\circ}$ (:: $\angle ABD = 60^{\circ}$) \Rightarrow Now, *CF* || *BE* and *CD* is a transversal. Then $\angle FCD + \angle CDE = 180^{\circ}$ (Interior angles) $\angle FCD = 180^{\circ} - 60^{\circ}$ ($\therefore \angle CDE = 60^\circ$) \Rightarrow $\angle FCD = 120^{\circ}$ \Rightarrow
- $p \parallel q$ and *l* is a transversal. Then .. 6.

•:• $\angle r = \angle z$ (Vertically opposite angles) $\angle r = 110^{\circ}$ (:: $\angle z = 110^{\circ}$) \Rightarrow $\angle x = \angle r$ (Corresponding angles) *.*.. $\angle x = 110^{\circ}$ $(:: \angle r = 110^\circ)$ \Rightarrow $\angle y + \angle r = 180^{\circ}$ (Pair of interior angles) and $\angle y = 180^{\circ} - 110^{\circ}$ \Rightarrow $\angle y = 70^{\circ}$ \Rightarrow

Hence,
$$\angle x = 110^\circ$$
, $\angle y = 70^\circ$ and $\angle r = 110^\circ$.

 \Rightarrow

:..

 \Rightarrow

Since, vertically opposite angles are equal $a + 3a + 2a + a + 3a + 2a = 360^{\circ}$ (Complete angle) ÷ $12a = 360^{\circ}$ \Rightarrow 360° *a* = \Rightarrow 12 $a = 30^{\circ}$

8. Let $\angle 1$ and $\angle 2$ be 2x and 3x respectively. \therefore *l* || *m* and *n* is a transversal.

 $2x + 3x = 180^{\circ}$

 $5x = 180^{\circ}$

(Linear pair of angles)

$$\Rightarrow \qquad x = \frac{180^{\circ}}{5} = 36^{\circ}$$

Then,

	∠1 = ∠5	(Corresponding angles)
\Rightarrow	$\angle 5 = 72^{\circ}$	(∵ ∠1 = 72°)
	∠2 = ∠4	(Vertically opposite angles)
\Rightarrow	∠4 = 108°	(∵ ∠2 = 108°)
	∠3 = ∠1	(Vertically opposite angles)
\Rightarrow	∠3 = 72°	
	∠4 = ∠6	(Alternate interior angles)
\Rightarrow	$\angle 6 = 108^{\circ}$	
	∠8 = ∠6	(Vertically opposite angles)
\Rightarrow	∠8 = 108°	
	∠7 = ∠5	(Vertically opposite angles)
\Rightarrow	∠7 = 72°	

Hence, $\angle 3 = 72^{\circ}$, $\angle 4 = 108^{\circ}$, $\angle 5 = 72^{\circ}$, $\angle 6 = 108^{\circ}$, $\angle 7 = 72^\circ$, $\angle 8 = 108^\circ$.

HOT QUESTIONS

Then,
$$\angle QOT = \angle ROS$$

(\because Vertically opposite angles)
 $\angle QOT = 120^{\circ}$ ($\because \angle ROS = 120^{\circ}$)
But, $\angle QOT = \angle QOP + \angle POT$
 \Rightarrow $120^{\circ} = x + 30^{\circ}$
 \Rightarrow $x + 30^{\circ} = 120^{\circ}$ ($\because \angle POT = 30^{\circ}$)
 \Rightarrow $x = 120^{\circ} - 30^{\circ} = 90^{\circ}$

3. Since, $\angle Q = 75^{\circ}$ and $\angle R = 100^{\circ}$ are interior angles for line PQ and RS.

 \therefore 75° + 100° = 175° \neq 180° Thus, PQ is not parallel to SR. Again, $\angle RST = 100^{\circ}$ and $\angle SRQ = 100^{\circ}$ are alternate angles for line ST and QR. $\angle RST = \angle SRQ = 100^{\circ}.$

Hence, $ST \parallel QR$.

Puzzle

 \Rightarrow

Let the current time be 'T' (24-hour clock time) Time after 2 hours = (T + 2)Time after 1 hour = (T + 1)Time at midnight = 24:00 According to question, $24 - (T+2) = \frac{1}{2} [24 - (T+1)]$ $24 - T - 2 = \frac{1}{2}(24 - T - 1)$ \Rightarrow $22 - T = \frac{1}{2}(23 - T)$ \Rightarrow

$$\Rightarrow \qquad 44 - 2T = 23 - T$$
$$\Rightarrow \qquad 2T - T = 44 - 23$$

T = 21The current time is 21:00 hours or 9:00 p.m.

Thus, if it were two hours later [i.e., 11 p.m.] from now, it would be half as long until midnight as it would be if it were an hour later (i.e., 10 p.m.).